Apoptotic deletion of Th cells specific for the 19-kDa carboxyl-terminal fragment of merozoite surface protein 1 during malaria infection.

نویسندگان

  • J Wipasa
  • H Xu
  • A Stowers
  • M F Good
چکیده

Immunity induced by the 19-kDa fragment of merozoite surface protein 1 is dependent on CD4+ Th cells. However, we found that adoptively transferred CFSE-labeled Th cells specific for an epitope on Plasmodium yoelii 19-kDa fragment of merozoite surface protein 1 (peptide (p)24), but not OVA-specific T cells, were deleted as a result of P. yoelii infection. As a result of infection, spleen cells recovered from infected p24-specific T cell-transfused mice demonstrated reduced response to specific Ag. A higher percentage of CFSE-labeled p24-specific T cells stained positive with annexin and anti-active caspase-3 in infected compared with uninfected mice, suggesting that apoptosis contributed to deletion of p24-specific T cells during infection. Apoptosis correlated with increased percentages of p24-specific T cells that stained positive for Fas from infected mice, suggesting that P. yoelii-induced apoptosis is, at least in part, mediated by Fas. However, bystander cells of other specificities also showed increased Fas expression during infection, suggesting that Fas expression alone is not sufficient for apoptosis. These data have implications for the development of immunity in the face of endemic parasite exposure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Absolute requirement for an active immune response involving B cells and Th cells in immunity to Plasmodium yoelii passively acquired with antibodies to the 19-kDa carboxyl-terminal fragment of merozoite surface protein-1.

Vaccination of mice with the leading malaria vaccine candidate homologue, the 19-kDa carboxyl terminus of merozoite surface protein-1 (MSP119), results in sterile immunity to Plasmodium yoelii, with no parasites detected in blood. Although such immunity depends upon high titer Abs at challenge, high doses of immune sera transferred into naive mice reduce parasitemia (and protect from death) but...

متن کامل

Long-lasting protective immune response to the 19-kilodalton carboxy-terminal fragment of Plasmodium yoelii merozoite surface protein 1 in mice.

Merozoite surface protein 1 (MSP1) is the major protein on the surface of the plasmodial merozoite, and its carboxy terminus, the 19-kDa fragment (MSP1(19)), is highly conserved and effective in induction of a protective immune response against malaria parasite infection in mice and monkeys. However, the duration of the immune response has not been elucidated. As such, we immunized BALB/c mice ...

متن کامل

Oral immunization with a combination of Plasmodium yoelii merozoite surface proteins 1 and 4/5 enhances protection against lethal malaria challenge.

Oral immunization of mice with Escherichia coli-expressed Plasmodium yoelii merozoite surface protein 4/5 or the C-terminal 19-kDa fragment of merozoite surface protein 1 induced systemic antibody responses and protected mice against lethal malaria infection. A combination of these two proteins administered orally conferred improved protection compared to that conferred by either protein admini...

متن کامل

Acquisition of invasion-inhibitory antibodies specific for the 19-kDa fragment of merozoite surface protein 1 in a transmigrant population requires multiple infections.

Antibodies against the 19 kDa C-terminal fragment of merozoite surface protein 1 (MSP1(19)) are a major component of the invasion-inhibitory response in individuals immune to malaria. We report here the acquisition of MSP1(19)-specific invasion-inhibitory antibodies in a group of transmigrants who experienced their sequential malaria infections during settlement in an area of Indonesia where ma...

متن کامل

Comparison of protection induced by immunization with recombinant proteins from different regions of merozoite surface protein 1 of Plasmodium yoelii.

Vaccination with native full-length merozoite surface protein 1 (MSP1) or with recombinant C-terminal peptides protects mice against lethal challenge with virulent malaria parasites. To determine whether other regions of MSP1 can also induce protection, Plasmodium yoelii MSP1 was divided into four separate regions. Each was expressed in Escherichia coli as a fusion protein with glutathione S-tr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of immunology

دوره 167 7  شماره 

صفحات  -

تاریخ انتشار 2001